
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
ORGANIZATION EUROPÈENNE POUR LA RECHERCHE NUCLÈAIRE

CERN - AB DIVISION

AB-Note-2005-009

Software documentation, and specifications of
the Analogue 48x8 Multiplexer

Levente Kovacs

Abstract

This document gives a description of the software operating in the Analogue 48x8 Multiplexer
(AMUX). The AMUX switches analogue signals from its inputs to the outputs. It can handle
low power signals, with bandwidth of 120MHz. The AMUX is controlled from an IP network,
and uses the TCP, and a system specific upper layer protocol for communication with the
controller peer. The operating protocol is detailed as well.

Geneva, Switzerland
23rd February 2005

Contents

1 Introduction 3

2 Hardware 3

3 Software 4

3.1 Software running in the MCU of the AMUX 4

3.1.1 LCD handling library . 4

3.1.2 path control.c . 5

3.1.3 mux control.c . 5

3.2 Networking library . 6

3.2.1 The mux address structure . 6

3.2.2 open mux() . 6

3.2.3 setup() . 6

3.2.4 bye() . 7

3.2.5 Operations . 7

3.3 Compilation . 7

3.4 Graphic User Interface (GUI) . 7

3.4.1 Compilation . 8

3.4.2 Controls . 8

3.4.3 Operations . 8

3.4.4 Error monitoring . 9

4 The protocol 9

4.1 General aspects . 9

4.2 Command overview . 10

4.2.1 SETUP . 10

4.2.2 CLEAR . 10

4.2.3 QUERY . 10

4.2.4 BYE . 10

4.3 Operations . 10

1

5 Measurements 11

5.1 Frequency response . 12

5.2 Typical delay . 12

5.3 Typical difference of delays between input groups 12

5.4 Typical difference of delays between output groups 14

5.5 Time domain . 14

5.6 Crosstalk . 14

6 Specifications 16

6.1 Interfaces . 16

6.1.1 Input / output analogue interfaces . 16

6.1.2 IEEE802.3 . 16

6.1.3 V.24 (RS232C) . 16

6.2 General specifications . 17

A Hardware errors 17

B Hardware programming 18

2

1 Introduction

The main principle of the Analogue 48x8 Multiplexer (AMUX) is to replace the relay arrays
in the PS CODD calibration system. Those relays were switching low power high frequency
signals. Since a huge number of relays were used to achieve the signal switching, the MTBF
was too low. The AMUX has no mechanical device inside. The AMUX also helps local
analogue signal observation and special purpose acquisition, and it is used in other processing
equipment.

2 Hardware

The hardware was an existing design. The signal switching is achieved by semiconductor chips.
Figure 1 shows the block diagram of the AMUX. It consists of six different blocks. The Input
limiters, the multiplexers, output buffers, the control system, the LCD, and the power supply.
These blocks are logical blocks, and can not be separated physically.

Controller
System

Power
Supply

MUX_D

5

6

5

8
Output
Buffers

8

MUX_C

MUX_B

MUX_A

Input lim
iters

48

16

16

16

V.24 Interface

Stage 1. Stage 2.

48 inputs

8 outputs

L
C

D

Analogue signal/bus

Communication signal

Digital signal/bus

IEEE 802.3
(Ethernet) Interface

Figure 1: Block diagram of the AMUX

Each input is equipped with a limiter for protection against over-voltage. It does not let the
input signal be greater or smaller than the positive and the negative power supply respectively.

The AMUX consists of two switch stages. At each stage the Analog Devices’s AD8110 16x8
multiplexer integrated circuits are used to switch analogue signals. At the first stage, there
are three multiplexer chips. Each handles 16 line out of the 48 inputs. As the second stage, a
4th chip collects the outputs of the first stage. Each output is buffered by an AD811 OPA.

The four multiplexer chips are controlled by a Rabbit RCM2100 MCU. It also provides network
connection to ethernet networks, and controls the LCD.

3

The power supply consists of rectifiers, filter capacitors, and four linear regulator chips which
are supplied by a transformer. The power supply provides ±5 and ±12 volts.

For more information on the hardware, see [1].

3 Software

3.1 Software running in the MCU of the AMUX

The software running on the MCU of the AMUX provides three functions:

• Controlling the multiplexer ICs

• Supervision of the internal lines between the two stages

• Protocol implementation for network communication

The main.c file implements the protocol, and some device initializations, and structure defi-
nitions. This file provides the main() function.

The main.c uses

• LCD OK.c

• PATH CONTROL.c

files to handle the LCD, and to manage internal analogue signal interconnections.

3.1.1 LCD handling library

LCD OK.c implements two user functions, and low level hardware access functions.

1. int LCDprintf(char *str);

2. void LCDinit();

LCDprintf() prints a string to the LCD panel pointed to by *str. The string is not formatted,
thus it must be formatted if needed. The other parts of the software use the sprintf() function
to do so. See source for example. The pointed string must contain one newline (NL) character
at most. The characters before the NL are displayed in the first row, while the others are
displayed in the second row. If the pointed string contains more than one NL character,
LCDprintf() returns 1, otherwise 0.

Note that the number of characters in a line are not checked. LCDprintf() overwrites the
internal buffer of the LCD if too many characters are being printed. The LCD accepts two
lines of 20 characters.

The LCDinit() function sets the LCD to the proper operation mode. Before calling the
LCDprintf() function, the LCDinit() function must be called. It takes no arguments, and has
void return value.

4

3.1.2 path control.c

This file implements the main part of the software. This function is used to create internal
paths by calling lower level functions (mux control.c), and keeps track of internal connections.
Paths can be created from any input to any output, or an output can be disconnected.

It tries to optimise the internal lines between the two stages. If one input signal must be
distributed to two or more outputs, switching is done at the second stage, and only one
internal line is occupied.

The only provided function is

unsigned char path control(char from, char to, struct state *pp);

from argument is allowed to be an integer, from 0 to 47, and 64. to value is an integer from
0 to 7. *pp is a pointer to a struct state structure. This structure is defined in main.c.

If this function is called with the from value is in the range of 0 and 47, it will try to create
a path from the input to the addressed output.

If the from value is 64, it will set the addressed output to not connected (NC) state.

The path control() function returns the following codes:

• 0 on success

• 1, if there is no internal line left for the connection

• 2, if the address was out of range

3.1.3 mux control.c

This file implements a function to control the multiplexer integrated circuits physically.

int mux ctrl(char mux, char from, char to);

mux is an integer from 0 to 3, where

• 0 is MUX A (input 0 to 15)

• 1 is MUX B (input 16 to 31)

• 2 is MUX C (input 32 to 47)

• 3 is MUX D (second stage).

from is an integer from 0 to 15. This is the input address of the multiplexer. to is an integer
from 0 to 7. This is the output address of the multiplexer.

mux ctrl() will always return 0.

5

3.2 Networking library

On the other side of the network, a UNIX machine controls the AMUX. The code is fully
POSIX [3] compatible, so it can be compiled in any POSIX-like system. The development
platform was Linux/i386. Apart from Linux/i386, the software is known to compile on Solar-
is/SPARC architecture, including the GUI.

This library has only one file, implementing the remote controlling procedures of the AMUX.

struct mux address
{

int sockfd;
char address[60];
int port;

};

int open mux(struct mux address ∗data);
int setup(struct mux address ∗data, int from, int to);
int bye(struct mux address ∗data);

Listing 1: Prototypes of the network library

3.2.1 The mux address structure

The members of mux address structure holds the address of the AMUX. The address member
is a pointer to a string, which can be an IP address in dotted decimal notation, or a host name.
The port member is an integer defines the destination IP layer port. Normally 2048.

The user must not touch the sockfd member.

3.2.2 open mux()

This function is used to open a connection to the remote AMUX unit. open mux() takes only
one argument; a pointer to a mux address type structure. The open mux function returns
0 on success, otherwise -1.

3.2.3 setup()

This function is used to create or clear a path from one of the 48 inputs, to one of the outputs.

setup() takes 3 arguments:

1. a pointer to a mux address type structure

2. from integer of range from 0 to 47 for input addressing or 64 for clearing

3. to integer of range from 0 to 7

The setup() function returns the following values:

6

• 0 on success

• -1, if there was no free route left to the addressed output

• -2, if one of the addresses (from or to values) is out of range

• -3, if a communication error occurred.

3.2.4 bye()

The bye() function closes the connection, which was created by the open mux() call. bye()
takes only one argument which is a pointer to the mux address structure.

The bye() function returns the following values:

• 0 on success

• -1 otherwise

3.2.5 Operations

Usually the given sequence is performed:

1. a mux address type structure must be initialized

2. the address and port members are filled with the corresponding values

3. the open mux() function is called

4. setup() function is called in order to create and/or clear paths in the remote AMUX

5. the bye() function must be called to close the connection

If this library used as detailed above, the commands transmitted to the AMUX are satisfying
the implemented protocol (See section 4).

and the structure.

3.3 Compilation

The network.c file is compiled against the standard C library. The network.h file must
be included before using this code. For compiler option, see the Makefile coming with the
distribution.

3.4 Graphic User Interface (GUI)

The GUI is for testing. If direct access is needed to the remote AMUX, a GTK+ client helps
to control. Figure 2 shows the user interface.

7

3.4.1 Compilation

The software is compiled against the network.c file, and the GTK+-1.2.10 [4]. Both must be
present on the system. Read and edit the Makefile to change the C compiler or its options
settings1. Type ”make” to build the program. ”make install” places the executable to
/usr/local/bin.

Figure 2: The GUI

3.4.2 Controls

The GUI offers the following controls:

• File menu
Connection can be opened or closed by clicking the appropriate item. The program is
terminated by clicking the Exit item.

• Edit menu
Address and Port values can be set by selecting the Preferences item.

• Help menu
The About... item shows information about the program, including the date of the
compilation.

3.4.3 Operations

After the program starts, the appropriate Address and Port values must be set. Connection
to the remote AMUX system must be created afterwards. Once the connection is established,
paths can be created from inputs to outputs by clicking the appropriate matrix elements.
Finally, the connection must be closed.

1The default setting for C compiler is gcc

8

3.4.4 Error monitoring

Error messages are generated using dialogue windows.

4 The protocol

The AMUX and the control system are communicating with the IP protocol. (Figure 3). The
network library comes with the RABBIT processor (Dynamic C) implements the stack up till
the 4th layer, namely TCP. A 5th layer protocol was designed to control the AMUX [2].

The Multiplexer
In a Rack

with X Window System
Remote terminal

PS control system

IP network

Figure 3: The multiplexer in CERN’s environment

4.1 General aspects

The protocol is command oriented and clear text based to provide direct control over the
AMUX. Commands may or may not have arguments. Each command is terminated by a
”CR/LF” sequence. Each command sent is acknowledged by a response. Responses always
started and ended with newline (NL) character. After the initial NL character, a + or - sign
is transmitted, referring to positive or negative acknowledgement. After the sign, some literal
information is transmitted.

The protocol may be used on a serial line. This is not yet implemented. Note that a raw serial
line does not have any link layer capabilities. One should use HDLC, or PPP to implement
this function. Bytes (messages) can be pushed to the line, but in that case, there is no chance
to identify data losses, and the channel will be unreliable. This way is not recommended.

9

4.2 Command overview

4.2.1 SETUP

Syntax: SETUP from to

This command is used to make a connection from the input from to the output to, where from,
and to are integer numbers referring the numbers of the input (0-47), and the output (0-7).

If the operation is successful, the response starts with ”+” sign. Otherwise, ”-”. Apart from
the signs, a literal response is sent. For example, a positive acknowledgement:

+OK Path created successfully. Internal path=0

Where Internal path is an integer representing the used line number between the two stages.
(0 at the example above).

4.2.2 CLEAR

Syntax: CLEAR to

This command disconnects the output addressed by the argument. The to field identifies the
target output. Value is an integer from 0 to 7.

4.2.3 QUERY

Syntax: QUERY [to]

This command will give a list of the internal connections. If to is given, it’ll only return the
addressed output.

4.2.4 BYE

Syntax: BYE

This command will close the connection.

4.3 Operations

Usually, the following process is performed.

1. A connection is created to the remote AMUX unit.
This is done by connecting the TCP port of the Multiplexer (Normally:2048). You can
issue a UNIX command like:

telnet2
<address> 2048

2The telnet program coming with Windows is NOT tested.

10

where <address> is the IP address of the multiplexer, or a host name. The second
argument (2048) is the TCP port.

2. Commands can be sent such as

• SETUP

• QUERY

• CLEAR

3. Finally the connection must closed by issuing the BYE command.

5 Measurements

The Hewlett Packard HP8753D Network analyzer was used for the measurements. Figure
4 shows the layout of the measurements. The input and output ports of the analyzer were
connected to different outputs and inputs of the multiplexer.

in_0

out_0

out_7

The multiplexer

Input_port

Output_port

HP8753 Network analyzer

in_47

Figure 4: The measurement layout

The following measurements were recorded:

1. The frequency response;

2. the typical delay between one input and one output terminals;

3. the typical delay between two paths. Both inputs and outputs were in the same input
group;

4. the difference of delays between two inputs belonging two different input multiplexer IC
(two different input groups);

5. the difference of delays between two outputs belonging two different output groups;

6. time domain;

7. crosstalk between two adjacent paths.

11

5.1 Frequency response

The frequency response was measured by connecting creating one path, and connecting the
analyzer to the input and the output of the path respectively. The analyzer was calibrated
before the measurement. Figure 5. shows the plot of the typical frequency response of a
created path.

Figure 5: Typical frequency response

5.2 Typical delay

The delay was measured by creating a path, and connecting the calibrated analyzer to the
input and the output of the path respectively. Figure 6. shows the plot of the typical delay
of a created path versus the frequency.

5.3 Typical difference of delays between input groups

The first stage of the multiplexer has 3 multiplexer chips. The delay from the input terminals
may differs, thus, different time delay could be introduced by the different signal paths. Figure
1 shows input grouping.

Figure 7 shows the difference of delay of input group A and input group B, vs. frequency.
Figure 8 shows the difference of input group A and C.

12

Figure 6: Typical delay

Figure 7: Delay difference between input group A and B

13

Figure 8: Delay difference between input group A and C

5.4 Typical difference of delays between output groups

Because of the lack of space, half of the output terminals of the multiplexer are connected by
a 1ns coaxial cable to the PCB. Therefore there is some difference between delays of these two
groups. These outputs are number 1,3,5 and 7. Figure 10 shows this delay vs. frequency.

5.5 Time domain

Figure 10 shows an impulse response. Note that the slope is not corresponding to the frequency
response. The pulse generator had 10ns rising and falling time. This plot shows that there is
no overshoot, and no other nonlinear distortion.

5.6 Crosstalk

Crosstalk have been measured by creating two paths, #1 and #2. The analyser was connected
to input of path #1 and the output of path #2. All other inputs and outputs were terminated
by 50Ω load. Result is shown on figure 11.

14

Figure 9: Delay difference between the two output groups

Figure 10: Impulse response

15

Figure 11: Crosstalk

6 Specifications

6.1 Interfaces

6.1.1 Input / output analogue interfaces

These are standard 50Ω female BNC connectors.

6.1.2 IEEE802.3

This is a standard 10Mbit/s, UTP Ethernet interface. Also known as 10BaseT. The connector
is an RJ-45 female connector. See tabular 1 and figure 12 for pin out. For more information
on the IEEE803.2 interface see [7].

81

Figure 12: The layout of the IEEE802.3 interface.

6.1.3 V.24 (RS232C)

This interface conforms to the V.24/RS232C standards. It uses the standard DB9F connector.
See figure 13 and tab. 2 for pin out. For more information on the V.24 interface, please refer

16

Pin number function

1 TX+
2 TX-
3 RX+
6 RX-

Table 1: The pin out of the IEEE802.3 interface

to [6]. Please note that the RTS and CTS signals are connected together to implement pseudo
hardware handshake.

9 6

5 1

Figure 13: The layout of the V.24 interface

Pin number Signal Direction seen from the AMUX

1 N.C. -
2 RXD in
3 TXD out
4 DTR in
5 GND -
6 DSR out
7 RTS out
8 CTS in
9 N.C. -

Table 2: The pin out of the V.24 interface

6.2 General specifications

See table 3 for general descriptions.

A Hardware errors

The schematic diagram and the PCB layout have an error. This error has been fixed on the
PCB, but not on the schematic diagram, nor on the PCB layout diagram. If there will be
further production of the AMUX, edit the schematic diagram and the PCB layout. In order
to correct this problem, disconnect pin 2 of ST1, and connect it to pin 16 of IC1 (+5VDC).

17

Description value unit

Input and output Impedance 50 Ω
Number of inputs 48 -
Number of outputs 8 -
Maximum input voltage 2,5 Vpp
Power consumption 50 W
Fuse rating 1 AT
Power supply voltage 230 VAC

Dimensions 89x432(483)x397 VxHxD[mm]

Table 3: Specifications

B Hardware programming

In order to install or upgrade the software to the hardware, the following the process must be
performed.

1. Connect the master host (usually a PC with the Zworld - Dynamic C software) to the
V.24 (RS232C) interface with a straight (MODEM) serial cable.

2. Short the 2-1 pins of jumpers labelled S1 to S5.

3. Power up the AMUX, and the PC, and press the reset button. Start downloading the
software as it is described in the manual of Dynamic C [5].

4. For normal operation, short 1-3 pins of S1 and S2 and remove the jumpers from S3,S4,
and S5.

References

[1] EDA document EDA-00249

[2] ITU-T X.200 recommendation
INFORMATION TECHNOLOGY OPEN SYSTEMS INTERCONNECTION BASIC
REFERENCE

[3] POSIX.1 IEEE Std 1003.1

[4] The Gimp Tool Kit widget set. Version GTK+-1.2.10 http://www.gtk.org/

[5] Zworld Dynamic C environment http://www.zworld.com/

[6] ITU-T V.24 recommendation
List of definitions for interchange circuits between data terminal equipment (DTE) and
data circuit-terminating equipment (DCE)

[7] IEEE 802.3
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and
Physical Layer Specifications

18

